Math 3450-Test 1

Name:

Score	
1	
2	
3	
4	
5	
6	
7	
T	

1. [3 points] List 3 elements from the set $T=\left\{x^{2}+x-1 \mid x \in \mathbb{Z}\right\}$.
2. [15 points - 3 each] Let $A=\{-1,0,5,1,10,3\}, B=\left\{1,10,3, \pi, \frac{1}{2}\right\}, C=$ $\{0,5, \pi\}$ and $D=\{1,5\}$. Compute the following.
(a) $A \cup B$
(b) $B-C$.
(c) $(A \cap C) \cup(A-C)$
(d) $C \times D$
(e) The power set $\mathcal{P}(C)$.
3. [9 points -3 each]
(a) True or False? Explain why.

$$
27 \equiv-33(\bmod 5)
$$

(b) True or False? Explain why.

$$
\overline{-6}=\overline{27} \quad \text { in } \mathbb{Z}_{8}
$$

(c) In $\mathbb{Z}_{5}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$, calculate

$$
\bar{a}=\overline{2} \cdot \overline{3}+\overline{4} \cdot \overline{4}
$$

Reduce \bar{a} so that a satisfies $0 \leq a \leq 4$.
4. [10 points] Let $A_{n}=\{-2 n, 0,2 n\}$.
(a) List the elements in each of the sets A_{1}, A_{2} and A_{3}.
(b) Calculate $\bigcap_{n=1}^{\infty} A_{n}$ and $\bigcup_{n=1}^{\infty} A_{n}$.
5. [10 points]

Pick ONE of the following to prove. Only pick one. If you do both then I will grade (A).
A) Let X and Y be sets. Prove that $\mathcal{P}(X \cap Y)=\mathcal{P}(X) \cap \mathcal{P}(Y)$.
B) Let $S=\mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim(c, d)$ if and only if $a+d=b+c$. Prove that \sim is an equivalence relation on S.
6. [10 points] Let A, B, and C be sets. Prove that

$$
A \times(B-C) \subseteq(A \times B)-(A \times C)
$$

7. [10 points] Consider the set of integers \mathbb{Z}. Let $n \in \mathbb{Z}$ with $n \geq 2$. Given $a, b \in \mathbb{Z}$, define $a \sim b$ if and only if n divides $a-b$. Prove that \sim is an equivalence relation.
