Math 3450 - Test1

Name:_____

Score	
1	
2	
3	
4	
5	
6	
7	
Т	

1. [3 points] List 3 elements from the set $T = \{x^2 + x - 1 \mid x \in \mathbb{Z}\}.$

2. [15 points - 3 each] Let $A = \{-1, 0, 5, 1, 10, 3\}, B = \{1, 10, 3, \pi, \frac{1}{2}\}, C = \{0, 5, \pi\}$ and $D = \{1, 5\}$. Compute the following.

(a) $A \cup B$

(b) B - C.

(c) $(A \cap C) \cup (A - C)$

(d) $C \times D$

(e) The power set $\mathcal{P}(C)$.

- 3. [9 points 3 each]
 - (a) <u>True or False?</u> Explain why.

$$27 \equiv -33 \pmod{5}$$

(b) <u>True or False?</u> Explain why.

$$\overline{-6} = \overline{27}$$
 in \mathbb{Z}_8

(c) In $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$, calculate

 $\overline{a} = \overline{2} \cdot \overline{3} + \overline{4} \cdot \overline{4}$

Reduce \overline{a} so that a satisfies $0 \le a \le 4$.

- 4. [10 points] Let $A_n = \{-2n, 0, 2n\}.$
 - (a) List the elements in each of the sets A_1 , A_2 and A_3 .

(b) Calculate
$$\bigcap_{n=1}^{\infty} A_n$$
 and $\bigcup_{n=1}^{\infty} A_n$.

5. [10 points]

Pick ONE of the following to prove. Only pick one. If you do both then I will grade (A).

A) Let X and Y be sets. Prove that $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$.

B) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if a + d = b + c. Prove that \sim is an equivalence relation on S.

6. [10 points] Let A, B, and C be sets. Prove that

$$A \times (B - C) \subseteq (A \times B) - (A \times C).$$

7. [10 points] Consider the set of integers \mathbb{Z} . Let $n \in \mathbb{Z}$ with $n \geq 2$. Given $a, b \in \mathbb{Z}$, define $a \sim b$ if and only if n divides a - b. Prove that \sim is an equivalence relation.